
User’s Guide

to

Eshell: The Emacs Shell

John Wiegley

Copyright c© 1999, 2000, 2001 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover texts being “A
GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License” in the Emacs manual.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”
This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

i

Table of Contents

1 What is Eshell? . 1
1.1 Contributors to Eshell . 1

2 Installation . 3
2.1 Short Form . 3
2.2 Long Form. 3

3 Basic overview . 6
3.1 Commands verbs . 6
3.2 Command arguments . 6

4 Commands . 8
4.1 Invocation . 8
4.2 Completion . 8
4.3 Aliases . 8
4.4 History . 8
4.5 Scripts . 8

5 Arguments . 9
5.1 The Parser . 9
5.2 Variables . 9
5.3 Substitution . 9
5.4 Globbing . 9
5.5 Predicates . 9

6 Input/Output . 10

7 Process control . 11

8 Extension modules . 12
8.1 Writing a module . 12
8.2 Module testing . 12
8.3 Directory handling . 12
8.4 Key rebinding . 12
8.5 Smart scrolling . 12
8.6 Terminal emulation . 12
8.7 Built-in UNIX commands . 12

9 Extras and Goodies . 13

ii

10 Bugs and ideas . 14
10.1 Known problems . 14

Concept Index . 21

Function and Variable Index 22

Key Index . 23

Chapter 1: What is Eshell? 1

1 What is Eshell?

Eshell is a command shell written in Emacs Lisp. Everything it does, it uses Emacs’
facilities to do. This means that Eshell is as portable as Emacs itself. It also means that
cooperation with Lisp code is natural and seamless.

What is a command shell? To properly understand the role of a shell, it’s necessary to
visualize what a computer does for you. Basically, a computer is a tool; in order to use that
tool, you must tell it what to do—or give it “commands.” These commands take many
forms, such as clicking with a mouse on certain parts of the screen. But that is only one
form of command input.

By far the most versatile way to express what you want the computer to do is by using
an abbreviated language called script. In script, instead of telling the computer, “list my
files, please”, one writes a standard abbreviated command word—‘ls’. Typing ‘ls’ in a
command shell is a script way of telling the computer to list your files.1

The real flexibility of this approach is apparent only when you realize that there are
many, many different ways to list files. Perhaps you want them sorted by name, sorted
by date, in reverse order, or grouped by type. Most graphical browsers have simple ways
to express this. But what about showing only a few files, or only files that meet a certain
criteria? In very complex and specific situations, the request becomes too difficult to express
using a mouse or pointing device. It is just these kinds of requests that are easily solved
using a command shell.

For example, what if you want to list every Word file on your hard drive, larger than
100 kilobytes in size, and which hasn’t been looked at in over six months? That is a good
candidate list for deletion, when you go to clean up your hard drive. But have you ever
tried asking your computer for such a list? There is no way to do it! At least, not without
using a command shell.

The role of a command shell is to give you more control over what your computer does
for you. Not everyone needs this amount of control, and it does come at a cost: Learning
the necessary script commands to express what you want done. A complicated query, such
as the example above, takes time to learn. But if you find yourself using your computer
frequently enough, it is more than worthwhile in the long run. Any tool you use often
deserves the time spent learning to master it.2

As of Emacs 21, Eshell is part of the standard Emacs distribution.

1.1 Contributors to Eshell

Contributions to Eshell are welcome. I have limited time to work on this project, but I
will gladly add any code you contribute to me to this package.

The following persons have made contributions to Eshell.
• Eli Zaretskii made it possible for Eshell to run without requiring asynchronous subpro-

cess support. This is important for MS-DOS, which does not have such support.

1 This is comparable to viewing the contents of a folder using a graphical display.
2 For the understandably curious, here is what that command looks like: But don’t let it fool you; once

you know what’s going on, it’s easier than it looks: ls -lt **/*.doc(Lk+50aM+5).

Chapter 1: What is Eshell? 2

• Miles Bader contributed many fixes during the port to Emacs 21.
• Stefan Monnier fixed the things which bothered him, which of course made things

better for all.
• Gerd Moellmann also helped to contribute bug fixes during the initial integration with

Emacs 21.
• Alex Schroeder contributed code for interactively querying the user before overwriting

files.
• Sudish Joseph helped with some XEmacs compatibility issues.

Apart from these, a lot of people have sent suggestions, ideas, requests, bug reports and
encouragement. Thanks a lot! Without you there would be no new releases of Eshell.

Chapter 2: Installation 3

2 Installation

As mentioned above, Eshell comes preinstalled as of Emacs 21. If you’re using Emacs
20.4 or later, or XEmacs 21, you can download the most recent version of Eshell from
http://www.gci-net.com/users/j/johnw/Emacs/packages/eshell.tar.gz.

However, if you are using Emacs 21, you may skip this section.

2.1 Short Form

Here’s exactly what to do, with no explanation why:
1. ‘M-x load-file RET eshell-auto.el RET’.
2. ‘ESC : (add-to-list ’load-path "<path where Eshell resides>") RET’.
3. ‘ESC : (add-to-list ’load-path "<path where Pcomplete resides>") RET’.
4. ‘M-x eshell RET’.

You should see a version banner displayed.
5. ‘ls RET’.

Confirm that you see a file listing.
6. ‘eshell-test RET’.

Confirm that everything runs correctly. Use M-x eshell-report-bug if not.
7. ‘cd ${dirname (locate-library "eshell-auto")} RET’.
8. ‘find-file Makefile RET’.
9. Edit the Makefile to reflect your site.

10. ‘M-x eshell RET’.
11. ‘make install RET’.
12. ‘find-file $user-init-file RET’.
13. Add the following lines to your ‘.emacs’ file:

(add-to-list ’load-path "<directory where you install Eshell>")
(load "eshell-auto")

14. ‘M-x eshell RET’.
15. ‘customize-option #’eshell-modules-list RET’.
16. Select the extension modules you prefer.
17. Restart Emacs!
18. ‘M-x info RET m Eshell RET’.

Read the manual and enjoy!

2.2 Long Form

1. Before building and installing Eshell, it is important to test that it will work properly
on your system. To do this, first load the file ‘eshell-auto’, which will define certain
autoloads required to run Eshell. This can be done using the command M-x load-file,
and then selecting the file ‘eshell-auto.el’.

Chapter 2: Installation 4

2. In order for Emacs to find Eshell’s files, the Eshell directory must be added to the
load-path variable. This can be done within Emacs by typing:

ESC : (add-to-list ’load-path "<path where Eshell resides>") RET
ESC : (add-to-list ’load-path "<path where Pcomplete resides>") RET

3. Start Eshell from the distributed sources, using default settings, by typing M-x eshell.
4. Verify that Eshell is functional by typing ls followed by 〈RET〉. You should have already

seen a version banner announcing the version number of this release, followed by a
prompt.

5. Run the test suite by typing eshell-test followed by 〈RET〉 in the Eshell buffer. It
is important that Emacs be left alone while the tests are running, since extraneous
command input may cause some of the tests to fail (they were never intended to run in
the background). If all of the tests pass, Eshell should work just fine on your system.
If any of the tests fail, please send e-mail to the Eshell maintainer using the command
M-x eshell-report-bug.

6. Edit the file ‘Makefile’ in the directory containing the Eshell sources to reflect the
location of certain Emacs directories at your site. The only things you really have to
change are the definitions of lispdir and infodir. The elisp files will be copied to
lispdir, and the info file to infodir.

7. Type make install in the directory containing the Eshell sources. This will byte-
compile all of the ‘*.el’ files and copy both the source and compiled versions to the
directories specified in the previous step. It will also copy the info file, and add a
corresponding entry to your ‘dir’ file—-if the program install-info can be found on
your system.
If you only want to create the compiled elisp files, but don’t want to install them, you
can type just make instead.

8. Add the directory into which Eshell was installed to your load-path variable. This
can be done by adding the following line to your ‘.emacs’ file:

(add-to-list ’load-path "/usr/local/share/emacs/site-lisp/eshell")

The actual directory on your system may differ.
9. To install Eshell privately, edit your ‘.emacs’ file; to install Eshell site-

wide, edit the file ‘site-start.el’ in your ‘site-lisp’ directory (usually
‘/usr/local/share/emacs/site-lisp’ or something similar). In either case enter
the following line into the appropriate file:

(load "eshell-auto")

10. Restart Emacs. After restarting, customize the variable eshell-modules-list. This
variable selects which Eshell extension modules you want to use. You will find docu-
mentation on each of those modules in the Info manual.

If you have TEX installed at your site, you can make a typeset manual from
‘eshell.texi’.
1. Run TEX by typing texi2dvi eshell.texi. (With Emacs 21.1 or later, typing make

eshell.dvi in the ‘man/’ subdirectory of the Emacs source distribution will do that.)
2. Convert the resulting device independent file ‘eshell.dvi’ to a form which your printer

can output and print it. If you have a postscript printer, there is a program, dvi2ps,

Chapter 2: Installation 5

which does that; there is also a program which comes together with TEX, dvips, which
you can use. For other printers, use a suitable DVI driver, e.g., dvilj4 for LaserJet-
compatible printers.

Chapter 3: Basic overview 6

3 Basic overview

A command shell is a means of entering verbally-formed commands. This is really all
that it does, and every feature described in this manual is a means to that end. Therefore,
it’s important to take firm hold on exactly what a command is, and how it fits in the overall
picture of things.

3.1 Commands verbs

Commands are expressed using script, a special shorthand language computers can un-
derstand with no trouble. Script is an extremely simple language; oddly enough, this is what
makes it look so complicated! Whereas normal languages use a variety of embellishments,
the form of a script command is always:

verb [arguments]

The verb expresses what you want your computer to do. There are a fixed number of
verbs, although this number is usually quite large. On the author’s computer, it reaches
almost 1400 in number. But of course, only a handful of these are really necessary.

Sometimes, the verb is all that’s written. A verb is always a single word, usually related
to the task it performs. reboot is a good example. Entering that on GNU/Linux will
reboot the computer—assuming you have sufficient privileges.

Other verbs require more information. These are usually very capable verbs, and must
be told specifically what to do. The extra information is given in the form of arguments.
For example, the echo verb prints back whatever arguments you type. It requires these
arguments to know what to echo. A proper use of echo looks like this:

echo This is an example of using echo!

This script command causes the computer to echo back: “This is an example of using
echo!”

Although command verbs are always simple words, like reboot or echo, arguments may
have a wide variety of forms. There are textual arguments, numerical arguments—even
Lisp arguments. Distinguishing these different types of arguments requires special typing,
for the computer to know exactly what you mean.

3.2 Command arguments

Eshell recognizes several different kinds of command arguments:
1. Strings (also called textual arguments)
2. Numbers (floating point or integer)
3. Lisp lists
4. Lisp symbols
5. Emacs buffers
6. Emacs process handles

Most users need to worry only about the first two. The third, Lisp lists, occur very
frequently, but almost always behind the scenes.

Chapter 3: Basic overview 7

Strings are the most common type of argument, and consist of nearly any character.
Special characters—those used by Eshell specifically—must be preceded by a backslash
(‘\’). When in doubt, it is safe to add backslashes anywhere and everywhere.

Here is a more complicated echo example:
echo A\ Multi-word\ Argument\ With\ A\ \$\ dollar

Beyond this, things get a bit more complicated. While not beyond the reach of someone
wishing to learn, it is definitely beyond the scope of this manual to present it all in a
simplistic manner. Get comfortable with Eshell as a basic command invocation tool, and
learn more about the commands on your system; then come back when it all sits more
familiarly on your mind. Have fun!

Chapter 4: Commands 8

4 Commands

Essentially, a command shell is all about invoking commands—and everything that en-
tails. So understanding how Eshell invokes commands is the key to comprehending how it
all works.

4.1 Invocation

Unlike regular system shells, Eshell never invokes kernel functions directly, such as
exec(3). Instead, it uses the Lisp functions available in the Emacs Lisp library. It does
this by transforming the command you specify into a callable Lisp form.1

This transformation, from the string of text typed at the command prompt, to the
ultimate invocation of either a Lisp function or external command, follows these steps:
1. Parse the command string into separate arguments.
2.

4.2 Completion

4.3 Aliases

4.4 History

4.5 Scripts

1 To see the Lisp form that will be invoked, type: ‘eshell-parse-command "echo hello"’

Chapter 5: Arguments 9

5 Arguments

5.1 The Parser

5.2 Variables

5.3 Substitution

5.4 Globbing

5.5 Predicates

Chapter 6: Input/Output 10

6 Input/Output

Chapter 7: Process control 11

7 Process control

Chapter 8: Extension modules 12

8 Extension modules

8.1 Writing a module

8.2 Module testing

8.3 Directory handling

8.4 Key rebinding

8.5 Smart scrolling

8.6 Terminal emulation

8.7 Built-in UNIX commands

Chapter 9: Extras and Goodies 13

9 Extras and Goodies

Chapter 10: Bugs and ideas 14

10 Bugs and ideas

If you find a bug or misfeature, don’t hesitate to let me know! Send email to
johnw@gnu.org. Feature requests should also be sent there. I prefer discussing one thing
at a time. If you find several unrelated bugs, please report them separately.

If you have ideas for improvements, or if you have written some extensions to this
package, I would like to hear from you. I hope you find this package useful!

10.1 Known problems

Below is complete list of known problems with Eshell version 2.4.2, which is the version
included with Emacs 21.2.

Differentiate between aliases and functions
Allow for a bash-compatible syntax, such as:

alias arg=blah
function arg () { blah $* }

‘for i in 1 2 3 { grep -q a b && *echo has it } | wc -l’ outputs result after prompt
In fact, piping to a process from a looping construct doesn’t work in general. If
I change the call to eshell-copy-handles in eshell-rewrite-for-command
to use eshell-protect, it seems to work, but the output occurs after the
prompt is displayed. The whole structured command thing is too complicated
at present.

Error with bc in eshell-test
On some XEmacs system, the subprocess interaction test fails inexplicably,
although bc works fine at the command prompt.

Eshell does not delete ‘*Help*’ buffers in XEmacs 21.1.8+
In XEmacs 21.1.8, the ‘*Help*’ buffer has been renamed such that multiple
instances of the ‘*Help*’ buffer can exist.

Pcomplete sometimes gets stuck
You press 〈TAB〉, but no completions appear, even though the directory has
matching files. This behavior is rare.

‘grep python $<rpm -qa>’ doesn’t work, but using ‘*grep’ does
This happens because the grep Lisp function returns immediately, and then
the asynchronous grep process expects to examine the temporary file, which
has since been deleted.

Problem with C-r repeating text
If the text before point reads "./run", and you type C-r r u n, it will repeat
the line for every character typed.

Backspace doesn’t scroll back after continuing (in smart mode)
Hitting space during a process invocation, such as make, will cause it to track
the bottom of the output; but backspace no longer scrolls back.

It’s not possible to fully unload-feature Eshell

Chapter 10: Bugs and ideas 15

Menu support was removed, but never put back
Using C-p and C-n with rebind gets into a locked state

This happened a few times in Emacs 21, but has been unreproducable since.

If an interactive process is currently running, M-! doesn’t work
Use a timer instead of sleep-for when killing child processes
Piping to a Lisp function is not supported

Make it so that the Lisp command on the right of the pipe is repeatedly called
with the input strings as arguments. This will require changing eshell-do-
pipeline to handle non-process targets.

Input redirection is not supported
See the above entry.

Problem running less without arguments on Windows
The result in the Eshell buffer is:

Spawning child process: invalid argument

Also a new less buffer was created with nothing in it. . . (presumably this
holds the output of less).
If less.exe is invoked from the Eshell command line, the expected output is
written to the buffer.
Note that this happens on NT-Emacs 20.6.1 on Windows 2000. The term.el
package and the supplied shell both use the cmdproxy program for running
shells.

Implement ‘-r’, ‘-n’ and ‘-s’ switches for cp
Make M-5 M-x eshell switch to “*eshell<5>*”, creating if need be
‘mv dir file.tar’ does not remove directories

This is because the tar option –remove-files doesn’t do so. Should it be Eshell’s
job?

Bind standard-output and standard-error
This would be so that if a Lisp function calls print, everything will happen as
it should (albeit slowly).

When an extension module fails to load, ‘cd /’ gives a Lisp error
If a globbing pattern returns one match, should it be a list?
Make sure syntax table is correct in Eshell mode

So that M-DEL acts in a predictable manner, etc.

Allow all Eshell buffers to share the same history and list-dir
There is a problem with script commands that output to ‘/dev/null’

If a script file, somewhere in the middle, uses ‘> /dev/null’, output from all
subsequent commands is swallowed.

Split up parsing of text after ‘$’ in ‘esh-var.el’
Make it similar to the way that ‘esh-arg.el’ is structured. Then add parsing
of ‘$[?\n]’.

After pressing M-RET, redisplay before running the next command

Chapter 10: Bugs and ideas 16

Argument predicates and modifiers should work anywhere in a path
/usr/local/src/editors/vim $ vi **/CVS(/)/Root(.)
Invalid regexp: "Unmatched (or \\("

With zsh, the glob above expands to all files named ‘Root’ in directories named
‘CVS’.

Typing ‘echo ${locate locate}/bin<TAB>’ results in a Lisp error
Perhaps it should interpolate all permutations, and make that the globbing
result, since otherwise hitting return here will result in “(list of filenames)/bin”,
which is never valuable. Thus, one could cat only C backup files by using ‘ls
${identity *.c}~’. In that case, having an alias command name glob for
identity would be useful.

Once symbolic mode is supported for umask, implement chmod in Lisp
Create eshell-expand-file-name

This would use a data table to transform things such as ‘~+’, ‘...’, etc.

Abstract ‘em-smart.el’ into ‘smart-scroll.el’
It only really needs: to be hooked onto the output filter and the pre-command
hook, and to have the input-end and input-start markers. And to know whether
the last output group was “successful.”

Allow for fully persisting the state of Eshell
This would include: variables, history, buffer, input, dir stack, etc.

Implement D as an argument predicate
It means that files beginning with a dot should be included in the glob match.

A comma in a predicate list should mean OR
At the moment, this is not supported.

Error if a glob doesn’t expand due to a predicate
An error should be generated only if eshell-error-if-no-glob is non-nil.

‘(+ RET SPC TAB’ does not cause indent-according-to-mode to occur
Create eshell-auto-accumulate-list

This is a list of commands for which, if the user presses RET, the text is staged
as the next Eshell command, rather than being sent to the current interactive
process.

Display file and line number if an error occurs in a script
wait doesn’t work with process ids at the moment
Enable the direct-to-process input code in ‘em-term.el’
Problem with repeating ‘echo ${find /tmp}’

With smart display active, if RET is held down, after a while it can’t keep up
anymore and starts outputting blank lines. It only happens if an asynchronous
process is involved. . .
I think the problem is that eshell-send-input is resetting the input target
location, so that if the asynchronous process is not done by the time the next RET
is received, the input processor thinks that the input is meant for the process;

Chapter 10: Bugs and ideas 17

which, when smart display is enabled, will be the text of the last command line!
That is a bug in itself.
In holding down RET while an asynchronous process is running, there will be
a point in between termination of the process, and the running of eshell-
post-command-hook, which would cause eshell-send-input to call eshell-
copy-old-input, and then process that text as a command to be run after the
process. Perhaps there should be a way of killing pending input between the
death of the process, and the post-command-hook.

Allow for a more aggressive smart display mode
Perhaps toggled by a command, that makes each output block a smart display
block.

Create more meta variables
‘$!’ The reason for the failure of the last disk command, or the text of

the last Lisp error.

‘$=’ A special associate array, which can take references of the form
‘$=[REGEXP]’. It indexes into the directory ring.

Eshell scripts can’t execute in the background
Support zsh’s “Parameter Expansion” syntax, i.e. ‘${name:-val}’
Write an info alias that can take arguments

So that the user can enter ‘info chmod’, for example.

Create a mode eshell-browse
It would treat the Eshell buffer as a outline. Collapsing the outline hides all of
the output text. Collapsing again would show only the first command run in
each directory

Allow other revisions of a file to be referenced using ‘file{rev}’
This would be expanded by eshell-expand-file-name (see above).

Print “You have new mail” when the “Mail” icon is turned on
Implement M-| for Eshell
Implement input redirection

If it’s a Lisp function, input redirection implies xargs (in a way. . .). If input
redirection is added, also update the file-name-quote-list, and the delimiter
list.

Allow ‘#<word arg>’ as a generic syntax
With the handling of word specified by an eshell-special-alist.

In eshell-veal-using-options, allow a :complete tag
It would be used to provide completion rules for that command. Then the
macro will automagically define the completion function.

For eshell-command-on-region, apply redirections to the result
So that ‘+ > ’blah’ would cause the result of the + (using input from the current
region) to be inserting into the symbol blah.
If an external command is being invoked, the input is sent as standard input,
as if a ‘cat <region> |’ had been invoked.

Chapter 10: Bugs and ideas 18

If a Lisp command, or an alias, is invoked, then if the line has no newline
characters, it is divided by whitespace and passed as arguments to the Lisp
function. Otherwise, it is divided at the newline characters. Thus, invoking +
on a series of numbers will add them; min would display the smallest figure,
etc.

Write eshell-script-mode as a minor mode
It would provide syntax, abbrev, highlighting and indenting support like emacs-
lisp-mode and shell-mode.

In the history mechanism, finish the bash-style support
This means ‘!n’, ‘!#’, ‘!:%’, and ‘!:1-’ as separate from ‘!:1*’.

Support the -n command line option for history
Implement fc in Lisp
Specifying a frame as a redirection target should imply the currently active window’s
buffer
Implement ‘>func-or-func-list’

This would allow for an “output translators”, that take a function to mod-
ify output with, and a target. Devise a syntax that works well with pipes,
and can accomodate multiple functions (i.e., ‘>’(upcase regexp-quote)’ or
‘>’upcase’).

Allow Eshell to read/write to/from standard input and output
This would be optional, rather than always using the Eshell buffer. This would
allow it to be run from the command line (perhaps).

Write a help command
It would call subcommands with ‘--help’, or ‘-h’ or ‘/?’, as appropriate.

Implement stty in Lisp
Support rc’s matching operator, e.g. ‘~ (list) regexp’
Implement bg and fg as editors of eshell-process-list

Using bg on a process that is already in the background does nothing. Specifying
redirection targets replaces (or adds) to the list current being used.

Have jobs print only the processes for the current shell
How can Eshell learn if a background process has requested input?
Support ‘2>&1’ and ‘>&’ and ‘2>’ and ‘|&’

The syntax table for parsing these should be customizable, such that the user
could change it to use rc syntax: ‘>[2=1]’.

Allow ‘$_[-1]’, which would indicate the last element of the array
Make ‘$x[*]’ equal to listing out the full contents of ‘x’

Return them as a list, so that ‘$_[*]’ is all the arguments of the last command.

Copy ANSI code handling from ‘term.el’ into ‘em-term.el’
Make it possible for the user to send char-by-char to the underlying process.
Ultimately, I should be able to move away from using term.el altogether, since
everything but the ANSI code handling is already part of Eshell. Then, things

Chapter 10: Bugs and ideas 19

would work correctly on MS-Windows as well (which doesn’t have ‘/bin/sh’,
although ‘term.el’ tries to use it).

Make the shell spawning commands be visual
That is, make (su, bash, telnet, rlogin, rsh, etc.) be part of eshell-visual-
commands. The only exception is if the shell is being used to invoke a single
command. Then, the behavior should be based on what that command is.

Create a smart viewing command named open
This would search for some way to open its argument (similar to opening a file
in the Windows Explorer).

Alias read to be the same as open, only read-only
Write a tail command which uses view-file

It would move point to the end of the buffer, and then turns on auto-revert
mode in that buffer at frequent intervals—and a head alias which assums an
upper limit of eshell-maximum-line-length characters per line.

Make dgrep load dired, mark everything, then invoke dired-do-search

Write mesh.c
This would run Emacs with the appropriate arguments to invoke Eshell only.
That way, it could be listed as a login shell.

Use an intangible PS2 string for multi-line input prompts
Auto-detect when a command is visual, by checking TERMCAP usage
The first keypress after M-x watson triggers ‘eshell-send-input’
Make / electric

So that it automatically expands and corrects pathnames. Or make
pathname completion for Pcomplete auto-expand ‘/u/i/std<TAB>’ to
‘/usr/include/std<TAB>’.

Write the pushd stack to disk along with last-dir-ring

Add options to eshell/cat which would allow it to sort and uniq
Implement wc in Lisp

Add support for counting sentences, paragraphs, pages, etc.

Once piping is added, implement sort and uniq in Lisp
Implement touch in Lisp
Implement comm in Lisp
Implement an epatch command in Lisp

This would call ediff-patch-file, or ediff-patch-buffer, depending on its
argument.

Have an option such that ‘ls -l’ generates a dired buffer
Write a version of xargs based on command rewriting

That is, ‘find X | xargs Y’ would be indicated using ‘Y ${find X}’. Maybe
eshell-do-pipelines could be changed to perform this on-thy-fly rewriting.

Write an alias for less that brings up a view-mode buffer
Such that the user can press 〈SPC〉 and 〈DEL〉, and then 〈q〉 to return to Eshell.
It would be equivalent to: ‘X > #<buffer Y>; view-buffer #<buffer Y>’.

Chapter 10: Bugs and ideas 20

Make eshell-mode as much a full citizen as shell-mode
Everywhere in Emacs where shell-mode is specially noticed, add eshell-mode
there.

Permit the umask to be selectively set on a cp target
Problem using M-x eshell after using eshell-command

If the first thing that I do after entering Emacs is to run eshell-command and
invoke ls, and then use M-x eshell, it doesn’t display anything.

M-RET during a long command (using smart display) doesn’t work
Since it keeps the cursor up where the command was invoked.

Concept Index 21

Concept Index

A
author, how to reach . 14

authors . 1

B
bugs, how to report them . 14

bugs, known . 14

C
contributors . 1

D
documentation, printed version 4

E
email to the author . 14

Eshell, what it is . 1

F
FAQ . 14

I
installation . 3

K
known bugs . 14

P
printed version of documentation 4
problems, list of common . 14

R
reporting bugs and ideas . 14

W
what is Eshell? . 1

Function and Variable Index 22

Function and Variable Index

(Index is nonexistent)

Key Index 23

Key Index

(Index is nonexistent)

